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ABSTRACT
Electromigration (EM) is a major failure e�ect for on-chip power
grid networks of deep submicron VLSI circuits. EM degradation of
metal grid lines can lead to excessive voltage drops (IR drops) be-
fore the target lifetime. In this paper, we propose a fast data-driven
EM-induced IR drop analysis framework for power grid networks,
named GridNet, based on the conditional generative adversarial net-
works (CGAN). It aims to accelerate the incremental full-chip EM-
induced IR drop analysis, as well as IR drop violation �xing during
the power grid design and optimization. More importantly, GridNet
can naturally leverage the di�erentiable feature of deep neural net-
works (DNN) to obtain the sensitivity information of node voltage
with respect to the wire resistance (or width) with marginal cost. Grid-
Net treats continuous time and the given electrical features as input
conditions, and the EM-induced time-varying voltage of power grid
networks as the conditional outputs, which are represented as data
series images. We show that GridNet is able to learn the temporal
dynamics of the aging process in continuous time domain. Besides,
we can take advantage of the sensitivity information provided by
GridNet to perform e�cient localized IR drop violation �xing in
the late stage design and optimization. Numerical results on 36000
synthesized power grid network samples demonstrate that the new

method can lead to 105� speedup over the recently proposed full-
chip coupled EM and IR drop analysis tool. We further show that lo-
calized IR drop violation �x for the same set of power grid networks
can be performed remarkably e�ciently using the cheap sensitivity
computation from GridNet.

ACM Reference Format:
Han Zhou, Wentian Jin, and Sheldon X.-D. Tan. 2020. GridNet: Fast Data-
Driven EM-Induced IR Drop Prediction and Localized Fixing for On-Chip
Power Grid Networks. In IEEE/ACM International Conference on Computer-
Aided Design (ICCAD ’20), November 2�5, 2020, Virtual Event, USA. ACM,
New York, NY, USA, 9 pages. https://doi.org/10.1145/3400302.3415714

1 INTRODUCTION
The on-chip power delivery network (PDN) is a key global intercon-
nects for physical implementation as it a�ects performance (IR drop,
timing) as well as area and cost (routability, layout density, metal
stack). At the same time, electromigration (EM) remains the top
killer for copper-based interconnects in current and near-future ad-
vanced VLSI technologies. The International Roadmap for Devices
and Systems (IRDS) [2] and the International Technology Roadmap
for Semiconductors (ITRS) [1] predict that the allowable current
density continues to decrease due to EM while the required current
density to drive the gates continues to increase. As a result, the EM-
related aging and reliability will become worse for current 7nm and
below technologies.

For practical VLSI chips, the on-chip power supply or power-
ground (P/G) networks are most susceptible to EM failures due to
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large and unidirectional current densities [6, 7, 11, 33]. From EM
perspective, interconnect wire is usually a tree containing multiple
segments with continuous metallization of one metal layer. Due to
EM aging and failure e�ects, the voltage drop of PDN which meets
the design requirement at the design time may become worse and
leads to time violations as time goes by. As a result, PDN network
design has to consider EM-induced aging and IR drop changes at
the target lifetime to make them more robust.

In the past few years, research e�orts focusing on so-called physics-
based EM analysis tool for power grid network analysis method
have been explored [9, 10, 12, 27]. However, all those methods need
to solve the partial di�erential equations (PDE) of hydrostatic stress
in the multi-segment interconnect wires. Due to the interplay be-
tween the stress and IR drops, a coupled time-varying EM and IR
drop analysis is needed for accurate EM-induced time-varying IR
drop analysis [27], which is very expensive (even without EM anal-
ysis) for full-chip PDN analysis.

The on-chip PDN networks typically go through many iterations
between PDN designs, IR analysis and �oorplan/placement updates
before the �nal EM signo� analysis. Typically PDNs at this stage are
well designed and sized to meet the IR drop (both static and dynamic
IR drops) requirement. But IR drops at a few nodes may still fail for
the target lifetime due to EM aging and failure processes. At this de-
sign stage, engineering change order (ECO) revisions or updates for
the PDN layout will be carried out. Hence, there is a need for fast in-
cremental EM-induced IR drop analysis for ECO like �xing for the
PDN layout via proper sizing of some wire segments [8]. We want
to point out that such fast EM-induced IR drop analysis is di�erent
than the traditional fast static and dynamic IR drop analysis meth-
ods [14, 17, 21, 28] as those methods mainly target at accelerating
the design time dynamic IR drop analysis tool such as ANSYS Red-
Hawk based on the power and timing information of the standard
cells.

On the other hand, deep neural networks (DNN) have propelled
an evolution in machine learning �elds and rede�ned many exist-
ing applications with new human-level AI capabilities. DNNs such
as convolution neural networks (CNN) have recently been applied
to many cognitive applications such as visual object recognition,
object detection, speech recognition, natural language understand-
ing, and etc. due to dramatic accuracy improvements in those tasks
[20]. Recently, generative adversarial networks (GAN) [16] gained
much traction as it can learn features (latent representation) with-
out extensively annotated training data. GAN-based methods have
been applied for VLSI physical designs such as generation of various
noise maps to facilitate the IR-drop noise sensor placement [22], for
layout lithography analysis [30] and sub-resolution assist feature
generation [4], for analog layout well generation [29]. However, the
proposed GAN-based design and analysis techniques are mainly tar-
geted for the statistical and static image generations (analysis). Less
works have been explored to learn time-series data.

In this article, we present a new data-driven fast EM-induced IR
drop analysis framework, called GridNet, for full-chip power deliv-
ery networks to address the need for fast incremental IR drop predic-
tion for sensitivity based power grid optimization and ECO �xing.
Contributions of this paper are as follows:

� We propose a fast data-driven EM-induced IR drop analy-
sis framework based on the conditional generative adversar-
ial networks (CGAN). GridNet treats the EM-induced time-
varying voltage of power grid networks as the data series
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images which are conditional outputs of the given electrical
features of wire resistance and current density of all wire
segments. We show that GAN model can be adopted to learn
temporal dynamics in the aging process of power grid net-
works by using the continuous time as one of the conditions.

� More importantly, we show that GridNet can not only per-
form fast if-then analysis for EM-induced IR drop estimation,
but also provide important sensitivity information of node volt-
age with respect to the wire resistance (or width) with marginal
cost. This is obtained by leveraging the di�erentiable feature
of DNN networks as we can easily extend di�erentiable loss
function of DNN networks for the input data as well.

� For our DNN model, we select resistance of all the wire seg-
ments, current sources attached at certain nodes as the elec-
trical modeling features assuming the mesh-structured power
grid networks with given voltage sources. Since we capture
the IR drop in view of incremental circuit analysis, our model
can be used on di�erent PDN design with di�erent work-
loads, di�erent wire width and length without retraining as
long as the main power grid structure and voltage sources
remain unchanged.

� Once GridNet is trained, we show how to obtain the cheap
sensitivity information from current DNN framework via the
built-in automatic di�erentiation operations. Then we demon-
strate how to perform a localized ECO and optimization ef-
�ciently to �x IR drop violations for late stage power grid
designs.

� Numerical results on a number of synthesized power grid
networks demonstrate that the new method can lead to �ve
orders of magnitude speedup over recently proposed full-chip
coupled EM and IR drop analysis tool. We further show that
localized IR drop �x for the same set of power grid networks
can be performed in a few seconds using the fast sensitivity
computation from GridNet, which is extremely e�cient.

This paper is organized as follows: Section 2 reviews the related
works. Section 3 reviews one of the state-of-the-art EM-induced IR
drop analysis methods, which serves as the baseline of the GridNet
model. Section 4 presents the details of our GAN based EM-aware IR
drop prediction method. Section 5 introduces the fast �x strategies
for IR drop violations. Experimental results and discussions summa-
rized in Section 6. Section 7 concludes this paper.

2 RELATED WORKS
We summarize a few related literatures on IR drop analysis, EM-
induced IR analysis and mitigation schemes.

2.1 Machine learning based IR drop analysis
and estimation

IR drop analysis (either static or dynamic) is concerned with voltage
drop estimation from given current or power sources, which can be
time-varying for dynamic analysis. A number of numerical tech-
niques have been well developed and can perform IR drop analy-
sis well on power grids, such as hierarchical methods, random walk
methods, Krylov-subspace methods, multi-grid techniques, and vector-
less veri�cation methods.

To further speed up the IR drop analysis, several machine learn-
ing based IR drop estimation/prediction methods have been pro-
posed [14, 17, 21, 28]. Those methods typically aim to replace the
standard full-chip IR drop analysis tool such as ANSYS RedHawk,
via data-based learning and feature selections. For instance, Lin et
al. [21] proposed full-chip dynamic IR drop analysis based on some
power and physical features extracted from cells and layouts. Fang
et al. [14] tried to improve the scalability by training the models
for localized region of layout. Xie et al. [28] proposed a CNN-based
model transferable across di�erent designs that is able to incorpo-
rate design-dependent features during preprocessing. Ho et al. [17]

focused on incremental IR drop prediction and mitigation. It uses
more electrical and physical features for the training based on the
gradient boosting framework.

2.2 EM-induced IR analysis and �xing works
Since EM failure can lead to wire resistance increase and even open
circuits, it can cause the increase of IR drops over time. As a result,
it is very important to perform the EM analysis and eventually EM-
induced IR drop analysis towards the user-speci�ed target lifetime.
A number of full-chip EM analysis for power grid networks have
been proposed recently [10, 18, 25, 26]. These methods can predict
the EM lifetime of the power grid and obtain failed trees. Speci�-
cally, Huang et al. proposed �rst physics-EM model based full-chip
EM analysis method [18, 19]. This method indeed considers inter-
action between the EM and IR drops of power grids, but the com-
pact EM model are less accurate. Chatterjee et al. proposed �nite
di�erence method (FDM) based full-chip EM analysis tool [10, 25]
to get better accuracy. However, such method still primarily consid-
ers the EM stress without considering impacts from wire resistance
changes of power grid networks. Cook et al. proposed a �nite dif-
ference analysis method, which was accelerated by Krylov subspace
based reduction technique [12]. This method can be applied to gen-
eral multi-segment interconnect wires with time-varying current
and temperature. However, this method still considers only the EM
stress and ignores the EM and IR drop interaction in power grid
networks.

Recently, Sun et al. [27] proposed a full-chip EM-induced IR drop
analysis, which considers dynamic interplay between the hydro-
static stress and electronic current/voltage in a power grid network.
This method solves the coupled time-varying partial di�erential
equations in time domain accurately and obtains the stress evolu-
tion in multi-segment interconnect trees. It is compatible with the
synthesized power grid networks from commercial design tools and
can show the resulted IR drop and EM failure hotspots at the target
lifetime. However, the simulation can be very slow and hence not
practical to use for fast EM �xing. This is one of the major issues
that motivate our work.

On the other hand, there are a number of works proposed re-
cently on wire segment sizing of power grid networks in order to
�x the EM failures and IR drop considering the multi-segment inter-
connect wires. Zhou et al. [31, 32] proposed a power grid network
sizing method based on the multi-segment EM immortality check
criteria. It automatically considers all the wire segments and their
interactions in an interconnect tree. However, the EM immortality
constrained optimization is still conservative as it requires all the
interconnect trees to be immortal, i.e., void nucleations are not al-
lowed. Chang et al. [8] proposed a machine learning based EM vi-
olation waiver system, which investigates every EM violation and
take an expert decision to either ignore (waive-o�) the violation or
resolve it (must-�x) in the design. However, this system cannot take
the violation �x action. Moudallal et al. [23] directly optimized EM-
induced IR drops on the time-varying power grid networks due to
the EM aging process. This method is based on a gradient descend
optimization and aims to size the individual wires to meet the target
IR drop criteria. However, large amount of computation is required.

3 PRELIMINARIES FOR FULL-CHIP
EM-INDUCED IR DROP ANALYSIS

EM aging process typically leads to resistance increase or even open
wire segments over time. However, for on-chip mesh-structured
power grid networks, due to its inherent redundancy, a few wire fail-
ures may not immediately result in signi�cant IR drop increase. But
as more wires nucleate, the IR drop will eventually lead to timing vi-
olations. As a result, the power grid networks become time-varying
networks with time-varying IR drops due to the EM induced aging
process [10, 18]. On the other hand, the failed wire segments alter



GridNet: Fast Data-Driven EM-Induced IR Drop Prediction and Localized Fixing for On-Chip Power Grid NetworksICCAD ’20, November 2�5, 2020, Virtual Event, USA

the current distributions of all the interconnect wires, which may
further accelerate the failure process. Hence, one has to consider the
interplay between the two physics: the electronic and hydrostatic
stress in the interconnect wires. In this work, we show how it can
be integrated with commercial EDA tools to achieve the EM signo�
analysis.

In this section, we brie�y review the coupled electronic and stress
analysis method on the full-chip power grid EM check, EMspice [3,
27], which represents the latest development for EM-induced IR
drop analysis. This method is used for the baseline for the proposed
IR-drop incremental prediction method. EMspice takes power grid
netlists from Synopsys IC Compiler (ICC) �ow, and tells which wires
will fail, their resistance changes and resulting in increased IR drops
of the power grids over the aging time.

The entire EM check in EMspice consists of several steps. In the
�rst step, the power grid information is constructed from Synopsys
ICC during the physical synthesis process for a speci�c design. Sec-
ond, the power grid and corresponding branch current are passed
to the EM immortality �lter to remove all the immortal wires. The
tool considers the wire immortality for both nucleation and incuba-
tion phases. Thirdly, it is to solve the stress and IR drop of intercon-
nect wires in a coupled way. The coupled solver consists of a �nite
di�erence time domain (FDTD) solver for EM stress [10, 12] and a
linear network DC IR drop solver. Lastly, all information will then
feed into the EM check framework graphical user interface (GUI)
for interactive user analysis.

In the third step, the coupled FDTD EM solver and linear network
IR drop analysis can be described as

C Û� „t” = A� „t” + PI „t”;

Vv „t” =

„


L

� „t”

B
dV;

M„t” � u„t” = PI „t”;

� „0” = »�1„0”;�2„0”; :::;�n „0”… ;at t = 0

(1)

where M„t” is the admittance matrix for the power grid network,
which is time-varying due to the fact that wire resistance changes
with EM failure e�ects. P is a b � p input matrix, where p is the
number of inputs, i.e., the size of current sources I „t”.u„t” represents
the nodal voltages of the network and I „t” are the current sources
from the function blocks of the chips. C;A are n � n matrices. And
n is the number of nodes. Note that � „0” denotes the initial stress
at t = 0. For each new simulation step, the stress from previous
simulation step is used as the initial condition, iteratively.

The above equations in Eq. (1) are coupled and must be solved
together. Linear network IR drop solver passes time-dependent cur-
rent densities and P/G layout information to the FDTD EM solver.
Once the voids are formed, IR drops in the power grid will change
and the current at each time step will be di�erent. The FDTD EM
solver provides the IR drop solver with new resistance information,
particularly, wires with voids. Since these two simulations are cou-
pled together, wire current and resistance on each mortal wire are
dependent on each other. Note that C;A matrices dependent on
wire structures are time-independent in the coupled equation. Such
coupled analysis on long target lifetime can be extremely time con-
suming for very large power grid networks [27]. As a result, it is
indeed necessary to build a fast EM-induced IR drop estimation for
incremental wire changes for IR drop ECO process.

4 FAST DATA-DRIVEN INCREMENTAL
EM-INDUCED IR DROP PREDICTION

4.1 Overall work�ow of the GridNet framework
Fig. 1 shows the overall work�ow of the proposed GridNet frame-
work. The work�ow consists of two phases: training and inference.
The training phase is shown in Fig. 1(a), the yellow block shows how

the power grids are generated. Then in the red block, we use EM-
spice [27] to predict the EM-induced IR drop for synthesized power
grid network using coupled EM-IR analysis. In the blue block, Grid-
Net receives the EM-induced voltage from 0 to Ttarget aging years
as well as the power grid. It extracts electrical and other information
features, the training process is shown with dashed arrows. Fig. 1(b)
illustrates the inference phase and the sensitivity-based power grid
�xing �ow. One of the two outputs from GridNet is the EM-induced
voltage at all the nodes at a speci�c aging year. And the other is the
sensitivity information: sensitivity of nodal voltages with respect
to the input resistances. These resistances can be obtained as a by-
product from the di�erentiable CGAN model as we will show later.
The sensitivity information will be utilized for �xing IR drop viola-
tions e�ciently in the chip design �ow. After incrementally updat-
ing the power grid, the new EM-induced voltage is predicted by the
GridNet model. If IR drop violations still remain unaddressed, the
designer can just iteratively perform the same round of incremen-
tal prediction and �xing until all IR drop violations are �xed.

4.2 Feature selections for GridNet
Given a mesh-structured power network, if we only look at the node
voltage, and input current sources, and according to Eq. (1), we can
formulate the time-varying model essentially as following

M„t” � u„t” = PI „t”; (2)

where M„t” is a modi�ed nodal analysis (MNA) matrix, I „t” is a col-
umn vector whose elements are current and voltage sources, and
u„t” contains both nodal voltages and dependent current variables.
As a result, for the DNN-based modeling, the input features should
include both I „t” and M„t”, which can be represented by the resis-
tance vectors of wire segments in the power grid networks. The re-
sistance of a wire depends on its length and cross-sectional area that
is proportional to wire width. Since we deal with mesh-structured
power grids, the topology of wire connections are implicitly pre-
sented if all the wire resistance or features are pre-ordered (as a vec-
tor) based on some counting order. As a result, the GridNet model is
able to deal with di�erent workloads, i.e., I „t” and initial wire resis-
tances (di�erent M at t = 0 under the same power grid structure).

4.3 Training data preprocessing and
representation

The preprocessing extracts the electrical features and geometries
from raw layouts. After the preprocessing, the workload samples
will be represented in a customized scheme.

Data preprocessing. Given a speci�c design, Synopsys ICC takes
a synthesized gate-level netlist and a standard cell library as input,
and then automatically create the circuit layout. In the preroute (de-
sign planning) step, one important procedure is performing power
network synthesis. As shown in Fig. 2(a), the power and ground net-
work are generated based on the constraints that the user de�nes. It
consists of VDD power nets, VSS ground nets, and two external sup-
plies. The results are later used to examine the voltage drop, resis-
tance and EM. Fig. 2(b) shows the voltage drop from the same power
grid and the unit is mV. Since our goal is to obtain EM-induced IR
drop which considers aging e�ect, we dumped the power grid in-
formation including layout geometry, layer, via, as well as branch
currents for later simulation.

Having su�cient amount of training data is a crucial require-
ment for machine learning approaches. The GAN-based EM-induced
IR drop prediction requires a lot of power grid samples and their cor-
responding ground truth EM-induced IR drop along the aging time.
However, synthesizing a large amount of designs and dumping their
power grid information is not realistic. We �rst synthesized three
power grid designs, and then for each design we generated 10000
di�erent workloads respectively. They network samples have the
same topology as the synthesized designs. Although they have the
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(a) (b)

Figure 1: Proposed GridNet framework: (a) Training �ow; (b) Prediction �ow and grids �x �ow with GridNet.

(a) (b)

Figure 2: (a) Power and ground networks of Cortex-M0 De-

signStart; (b) Voltage drop map of the power network of (a).

same number of power strips, they di�er in the branch width and
length, thus the wire can be sized properly later on for EM-induced
IR drop �xing.

Data representation. Representation of data has a tremendous im-
pact on the GAN behavior. To preserve the geometric and spatial re-
lationship, we �rst encode the power grid workloads and voltages
into matrices and then convert the voltage matrix into red-green-
blue (RGB) channels of images, as illustrated in Fig. 3. Each pixel
stands for one node, the length and width information are discarded,
while the relative position of each node and its voltage value are
kept. Such compact representation will dramatically reduce the im-
age size compared with the representation from Fig. 2(b), which will
further speed up the training process.

As the pixels in our images are not RGB colors but real voltage
values instead, they usually do not change dramatically, e.g., the
maximum voltage value is 1.05V and most values fall in the range
»0:7 1:05…. The channels of input are real resistance and current,
thus they have the same numerical problem. Such a small numerical
range is not suitable for neural networks. As a result, we rescaled
all data in the training to the range between -1 and 1.

(a) (b)

Figure 3: Compact IR drop image of power grid networks (a)

Design 2: 4k nodes; (b) Design 3: 16k nodes

4.4 The proposed GridNet architecture
GAN is a neural network model widely used in unsupervised ma-
chine learning tasks. A traditional GAN is composed of two sep-
arate deep neural networks, one is generator G and the other is
discriminator D, there is no control on modes of the data being gen-
erated. In the CGAN model, the generator learns to generate a fake
sample with a speci�c condition rather than a generic sample from
unknown noise distribution.

For our problem, GridNet does not generate voltage maps from
the random noises, instead, the inputs are the selected electrical and
implicit geometrical features of the power grid networks and aging
time. In order to implicitly learn the distribution of the voltage and
map it to the corresponding 2D voltage image, we use a CGAN as
backbone for our model shown in Fig. 4. As we can see, to make the
GAN model to learn the temporal dynamics of EM-induced IR drops,
we propose to use the time variable as the continuous condition for
both generator and discriminator, which was demonstrated to be
e�ective for �nancial market risk analysis [15].

Take a power grid design with 120 rows and 120 columns as
an example, there are �ve channels of input for the generator: the

column resistance image imgcol 2 R119�120�1, the row resistance

image imgrow 2 R120�119�1, the current source image imgcur 2
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Figure 4: The proposed CGAN architecture for EM-induced

voltage prediction

R
120�120�1, wire length l , and aging time t . t and l are expanded

into R128�128�1 by channel-wise duplication, respectively. In addi-
tion, the three images are all expanded to the same size, such that
imgcol , imgrow , imgcur , l and t can be concatenated depth-wise.
The resulted input x given to the generator is a 128 � 128 � 5 ten-
sor with all entries normalized as described in previous section. We
employ an encoder-decoder architecture as our generator that is
widely used in image-to-image applications. The input is downsam-
pled through a series of convolutional layers until a bottleneck layer,
at which the latent features are extracted and then reversely up-
sampled through transposed convolutional layers. The generator is
trained to extract useful latent features from input and then recon-
struct the output voltage map basing on these information.

The output of the generator is a voltage map, which is denoted as
G„x”. Either the generated G„x” or the real EM-induced voltage im-
age y is fed into the discriminator D alternatively together with its
corresponding workloads and aging time x as the condition input.
The output of the discriminator is denoted as D„G„x”; x” or D„y; x”
depending on whether the generated or the real EM-induced volt-
age image was inputted. In the training process, we use the Wasser-
stein Distance [5] as the measurement of the di�erence between
the real and the generated EM-induced voltage image distribution
to take advantage of higher stability and convergence possibility.

4.5 Fast sensitivity calculation using the
automatic di�erentiation in DNNs

One important observation for all the deep neural networks includ-
ing GAN model is that they are all di�erentiable with respect to
the model weights so that training can be performed by sensitiv-
ity/gradient information via the automatic di�erentiation scheme,
speci�cally the back-propagation algorithm.

In this work, we leverage the existing automatic di�erentiation
to compute the sensitivity information between the output and all
of input resistance through GridNet. To be speci�c, we can com-
pute the partial derivatives of one output voltage map with respect
to every input resistance in one back propagation (same cost of
one inference) of the generator DNN network using the Tensor�ow
tf.gradents API, which is exactly the same technique employed in
the training process. The only di�erence here is that the derivative
is taken with respect to the input of the generator instead of the
trainable variables in the model. In other words, one has to perform
one inference using GridNet to compute sensitivity for k resistances
for one output node. Our sensitivity calculation is similar to the ad-
joint network based approach [13], however, this method requires

two simulations of the EMspice for the original and adjoint networks
for each output node. In our case, we do not require computing the
sensitivities for all the output nodes, instead, we only focus on a
few nodes that are subject to IR drop violations, which makes the
sensitivity computation even more e�cient.

5 FAST LAYOUT FIXING FOR EM-INDUCED IR
FAILURES

Power network is usually synthesized at an early stage of chip de-
sign �ow. Given a power gird, it is possible that it is vulnerable at the
target time Ttarget . In other words, the maximum IR drop exceeds
the voltage drop threshold Vdropth , thus the design �aws need to

be �xed. Speci�cally, the EM-lifetime of the power grids refers to
the time at which an EM-induced voltage failure is expected to hap-
pen. There are two failure scenarios: vulnerable in the initial state;
robust initially, but has EM-induced voltage violations at Ttarget .

In this section, we present two fast localized �xing methods based
on the proposed GridNet. The proposed methods are targeted for
ECO like process to �x a few IR drop violations. In section 5.1, we
introduce a method that uses a relatively rough estimation to ex-
pediently �x IR drop failures at the preroute stage. In section 5.2,
we present another way, on the contrary, the method only takes
the second failure scenario into account. It bene�ts from the gradi-
ent information obtained from GridNet, We assume that only a few
EM-induced IR drop violations will occur atTtarget during the later
power grid design stages such as EM signo�. This is typically the
situation as the power grid network has been well designed at the
synthesis step with EM failure considerations.

5.1 Fast localized IR drop �xing
The �rst localized �x method tries to size whole interconnect tree
one at time until we meet the IR drop constraint at the targeted life-
time. Speci�cally, after a power grid network is synthesized, multi-
ple voltage violations may occur at Ttarget . With GridNet, we can
easily obtain all the nodal voltages at Ttarget . In addition, GridNet
is able to provide the EM lifetime of the power grid.

Starting from the original power grids, widening one intercon-
nect tree can have inevitable e�ects on nearby trees, namely, �xing
several critical trees may be su�cient to �x voltage violations on
all trees within this local area. Therefore, there is no need to widen
all vulnerable trees at the same time, which would result in large
design overhead. In our method, if voltage violations happen, the
interconnect with the largest IR drop will be widened by a scaling
factor s , where s > 1 and it is determined by experiments.

According to Moudallal et al. [23], the voltage drop is a monoton-
ically increasing function with respect to aging time given a certain
grid sample, thus we only need to look at Ttarget without consid-
ering any time in between.

The modi�ed power grid information is then fed into GridNet to
get the newly predicted nodal voltages at Ttarget . We iteratively
predict voltages and widen one tree at a time until the IR drop of all
nodes are bounded within VDD � Vdropth .

According to the design rules and the minimum allowed space
for standard cell placement and routing, the interconnect wire must
be modi�ed in a manner under some speci�c constraints. In our
method, we specify that each wire can be widened under those de-
sign rules, but they have a maximum allowed value.

5.2 Sensitivity based localized IR drop �xing
As we discussed, the sensitivity information of node voltage with re-
spect to the wire resistance can be obtained as by-product from the
CGAN model of GridNet for each given input design using simple
back propagation as mentioned in Section 4.5. Typically the candi-
date wires (and its wire segments) are the wires with or close to void
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nucleations. As a result, those wires are good candidates for �xing
as they are the ones causing the EM-induced IR drop failures.

Speci�cally, we assume that we have n violation nodes whose
nodal voltages are represented by vi , i 2 f1; ::;ng and m wire seg-
ments whose with are represented by wi , i 2 f1; :::;mg. Then we
can compute the following partial sensitivity matrix Sn�m :

Sn�m =

26666666664

@v1

@w1

@v1

@w2
: : :

@v1

@wm

@v2

@w1

@v2

@w2
: : :

@v2

@vm
:
:
:

:
:
:

:
:
:

:
:
:

@vn
@w1

@vn
@w2

: : :
@vn
@wm

37777777775

(3)

Let �V = »�v1; :::;�vn… represent the voltage drop changes we
expected to meet IR drop constraint atTtarget and�W = »�w1; :::;�vm …
be the required �rst order width changes to make the voltage drop
change. Then we have

�V = S � �W (4)

To solve �W, we perform the least square regression as follows:

S
T
�V = S

T
S � �W

�W = „ST S”�1
S
T
�V

(5)

We note that the required width changes �W may also be subject
to the design rules as there is upper bound for the width. Once we
update the width changes to the power grid network, we will run
GridNet to verify IR drop at Ttarget . If there are still IR drop viola-
tions, more sensitivity based �xing will be performed until there is
no IR drop violation. The �nal design will be validated by EMspice.

6 EXPERIMENTAL RESULTS AND
DISCUSSIONS

6.1 Experiment setup
The proposed EM-induced IR drop prediction model for power grids
(GridNet) has been implemented in Python using the TensorFlow
library. The voltage violation �xing methods are implemented in
Python. The experiments were carried out on a Linux server with
2 Xeon E5-2698v2 2.3GHz processors and Nvidia Titan X GPU.

In order to validate our work, we start from the power grid of
the Cortex-M0 DesignStart processor. It is a 32-bit processor that
implements the ARMv6-M architecture. This processor is synthe-
sized using Synopsys Design Compiler, and is placed and routed
with Synopsys 32/28nm Generic Library. The power grid of Cortex
has two layers, and there are 1k nodes in total.

Power grid information obtained from Synopsys ICC is then fed
into the power grid parser. The information includes but is not lim-
ited to structure, node location, wire layer, wire length, current source,
voltage source and resistance values. The netlist format extracted
from the grids agrees with IBM power grid benchmarks [24]. In
order to obtain enough power grids for training, we generate lots
of synthesized IBM-format power grid networks so that di�erent
workloads can be tested and veri�ed.

We train our DNN model using three di�erent designs/topologies
and each of them has a dataset containing 12000 pairs of (workloads
and aging time, EM-induced IR drop) samples. Design 1 comes from
Cortex-M0, Design 2 and Design 3 are shown in Fig. 3(a) and Fig. 3(b),
respectively. The temperature used in the experiment is 373K, the
IR drop threshold Vdropth is 10%VDD and the target EM lifetime

Ttarget is set to 10 years. For each workload, we collect the EM-
induced IR drop results obtained by EMspice at 11 discrete aging
time instants (0 to 10 years). We randomly select 15% workloads
for testing and the remaining 85% are assigned for the training set.
During the training phase, all samples are randomly permuted at
the beginning of every epoch.

6.2 EM-induced IR drop prediction results
6.2.1 Accuracy. Once the GridNet model is trained, the generator is
preserved and serves as the model for inference. The model can take
any power grid workload with the same topology as input and give
the predicted EM-induced voltage at a speci�ed aging year. The pre-
dicted results from GridNet are compared with the baseline, which
are the simulation results from EMspice. To evaluate the estimation
error, we employ the root-mean-square error (RMSE) and as the
metrics

RMSE =

s˝N
i=1 „y0 � y”2

N
(6)

wherey0 andy are the predicted and real voltage value, respectively.
N is the total number of nodes. We evaluate our trained GridNet
model on the testing set which was set aside during the training
phase. The workloads in the testing set were randomly generated
in the same way as the training set was produced. The random gen-
eration process guarantees that there is no overlap between these
two datasets. The details and results are shown in Table. 1.

Table 1: Prediction results of di�erent designs

circuit # nodes # voltage sources VDD (V) RMSE (mV)

Design 1 1024 2 1.05 5.697

Design 2 4096 4 1.05 6.100

Design 3 16384 9 1.05 3.922

A total number of 1800 di�erent workloads are tested for each
design. For each workload, 11 voltage images at 0 to 10 discrete
aging years are generated. As can be seen from Table 1, comparing
all 19800 generated EM-induced voltage images with the baseline
on Design 1, GridNet achieves an average RMSE of 5:697mV, which
represents about 0:57% error for 1.05V power supply.

We randomly pick one testing workload from Design 2 and com-
pare the EM-induced voltage estimation at di�erent aging years
with the baseline in Fig. 5. Fig. 5(a) shows the predicted and real
voltages at 0, 6 and 10 years, respectively. Since there is no obvious
di�erence can be seen, we zoom in the upper right corner of the de-
sign and use Fig. 5(c) to demonstrate the prediction error. Initially,
the error distributes evenly, while at the end of 6th year the error
grows larger at two spots. The maximum error at 10 years is only
0.04mV, which indicates a good prediction. Fig. 5(b) illustrates the
EM-induced IR drop increasing process. The left �gure shows that
from 0 to 6 years, the IR drop at some spots increases faster than
the other nodes. When comparing the right �gure to the left, we
can �nd that the spots are spreading over time. The reason is that
there are nucleated voids nearby and the EM aging process leads to
the resistance increase.

We further compare the predicted EM-induced IR drop with base-
line on Design 1.1 and Design 1.2. To validate whether our model
can successfully predict the IR drop of unseen power grids, all the
testing data is separated from training data. The error statistics are
shown in Table. 2, where std stands for standard deviation.

Design 1.1 is a power grid with one mortal interconnect and the
initial maximum IR drop is 58.75mV. After one year, the resistance
of the mortal interconnect begin to increase due to EM and the
value is changing over time. After 10 years, the maximum IR drop
becomes 59.54mV, which means the EM lifetime meets the 10 year
target. In contrast, the predicted IR drop in the initial state and after
10 years are 57.93mV and 59.95mV, respectively. Fig. 6(a) presents
the correlation between the predicted EM-induced IR drop and base-
line from 0 year to 10 years, with one year interval, e.g., the purple
dots indicate IR drop at 10 years. The errors of all predicted values

are less than 3.5mV. The average error is 4:04 � 10�4mV, with stan-

dard deviation of 7:52 � 10�4mV.
Design 1.2 is a power grid with 6 mortal interconnects and its

EM-lifetime is just 3 years. Initially, the real maximum IR drop is
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Table 2: Error statistics of Design 1.1 and Design 1.2

circuit
initially at 3th aging year at 10th aging year

mean (�V) max (mV) std (�V) RMSE (mV) mean (�V) max (mV) std (�V) RMSE (mV) mean (�V) max (mV) std (�V) RMSE (mV)

Design 1.1 0.8165 3.4879 0.6115 1.0199 0.7382 2.5299 0.6999 1.0170 -0.3939 1.1503 0.8030 0.8941

Design 1.2 18.8496 3.8722 0.9303 2.1058 31.1950 12.8284 1.2347 3.3547 82.7170 27.0619 2.5941 8.6685

(a)

(b)

(c)

Figure 5: Comparison of inference results from GridNet and

EMspice. (a) IR drop distribution at di�erent years; (b) in-

creased IR drop due to EM; (c) predicted voltage error.

84.47mV whereas the predicted maximum IR drop is 82.34mV. Af-
ter 3 years, the EM-induced values become 84.58mV and 85.56mV
for the baseline and predicted values respectively. From the 4th year,
wire resistance starts to increase, which will have large impacts on
the whole grid. As a result, both the baseline and predicted one have
the maximum IR drop larger than 110.83mV, resulting in a power
grid failure. Finally, at 10th year, the baseline and the predicted IR
drop value are 133.99mV and 127.39mV, respectively. From Fig. 6(a)
and Fig. 6(b), we can see that the correlations for di�erent years in
the �rst �gure have similar patterns. On the other hand, the sec-
ond �gure looks di�erent, the data for the �rst few years are con-
centrated in the lower part and the data for last few years are dis-
tributed throughout the whole �gure. The reason is that the EM
e�ect is more clearly re�ected in Design 1.2, which has larger resis-
tance increase.

The error histogram in Fig. 7 shows the error distribution of the
predicted results. In Fig. 7(a), most of the predicted results are con-
centrated near the center, which agrees with the above analysis. As
for Fig. 7(b), the error distribution for di�erent years varies, because
there are relatively large changes in the nodal voltages due to EM.
When we look at the details of each year, we can �nd that the er-
ror still follows the uniform distribution. For instance, at 10th year,
87.79% of the nodes have errors between 8.13mV and 13.8mV.

(a) (b)

Figure 6: Predicted IR drop versus baseline of (a) Design 1.1;

(b) Design 1.2.

(a) (b)

Figure 7: Error histogram of (a) Design 1.1; (b) Design 1.2.

We further do accuracy study on the EM lifetime prediction for
power grid networks. We randomly select 700 mortal designs/workloads
from the testing sets, the lifetime prediction results are shown in
Fig. 8. Among the designs, the prediction from GridNet is consistent
with the baseline for 83% cases. If we allow two year prediction er-
rors, then it agrees with the baseline in 90.86% cases. The accuracy
degradation is due to the fact that lifetime is more related to the
minimum voltage rather than all nodal voltages.

Figure 8: Predicted lifetime versus baseline.

6.2.2 Prediction speedup analysis. In what follows, we provide a
comparison of speed between GridNet and the baseline EMspice on
EM-induced voltage analysis. We randomly pulled the designs from
both training and testing set from Design 1, which contains 1k nodes.
Both our GridNet model and EMspice were tested to generate the
voltages from initial state until 10 years. Speci�cally, the simulation
time step of EMspice is set to one month. The experiments were
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Figure 9: Prediction performance comparison between EM-
spiceand GridNet

performed on the same server and the accumulating time cost on
500 designs are plotted in Fig. 9.

The total computing time on the 500 designs are 31.26h and 10.0s
for EMspiceand GridNet, respectively, indicating that about 11232
or 104� speedup overEMspice. For EMspice, the time cost on the
estimation of a single design varies from 0.57s to 427s depending on
the EM immortality condition. ForGridNet, however, the inference
speed is steadily around 5ms for all the designs. The computing
cost ofGridNetis invariant to immortality conditions, which makes
it much more suitable for larger scale designs and leads to a better
scalability.

As for larger designs, the speedup becomes even more signi�cant
since the simulation time forEMspicegrows considerably. For in-
stance, forDesign 3which has 16k nodes, obtaining the EM-induced
IR drop result at the 10th aging year takes more than 1.5h. If apply-
ing the proposedGridNet, the inference time will be around 10ms,
which indicates that the speedup will be more than 5� 105.

6.3 Results from the fast IR drop �xing scheme
Now we show how to perform a quick IR drop �xing based onGrid-
Net. We employ two strategies for the IR drop �xing. Here we men-
tion the �rst one.

The result of the fast IR drop �xing method using prediction re-
sults fromGridNetare listed in Table 3. The last column in this table
and following table indicate CPU times used for the �xing process
including data processing and inference costs ofGridNet. There ex-
ist some benchmarks which do not satisfy the target EM lifetime
with their original width con�guration. In this case, we widened the
most vulnerable interconnects to make the tree less likely to fail. As
we can see, inDesign 1.aexample, there are 9 mortal wire in the be-
ginning. At the same time, the minimum voltage of the power grid
is 0.9201V, which is a 12.37% voltage drop, meaning that the EM
lifetime is 0. Following the method discussed in Section 5.1, after
the �rst time width adjustment, the number of mortal wires reduce
from 9 to 7, however, the maximum voltage drop is 10.8% which
still does not meet our design requirement. In the second iteration,
we keep modifying the same interconnect, after that, the number of
mortal trees is reduced to 6, with a 1.93% area increase compared
to the original design. In the third iteration, another interconnect is
widened, after modi�cation, there still exists 5 mortal wires, how-
ever, all the voltage drops in the initial state are within 10%, and
after 10 years, the minimum nodal voltage is 0.9461V, which meets
the 10 year target.

Table 3: Results of fast IR drop �xing method

circuit
# mortal original

# iter
# widened area total

wires lifetime wires increase time

Design 1.a 9 0 yr 3 2 3.31% 0.6644s
Design 1.b 3 8 yr 1 1 0.45% 0.2865s
Design 2.a 6 3 yr 2 2 1.75% 1.6461s
Design 2.b 4 6 yr 2 1 1.08% 1.3643s

6.4 Sensitivity-based localized �xing results
Table 4 shows results from the sensitivity-base localized �xing scheme.
In Design 1.cexample, the predicted lifetime of the power grid net-
work is 9 years. This gird has 3 mortal wires initially and 2 predicted
IR drop violations atTtarget . After �nding the violations and us-
ing the sensitivity information fromGridNet, we �nd that all the 3
branches with void nucleations have to be widened. It turns out that
just one iteration, the modi�ed network meets the 10 year lifetime
target. This result is also veri�ed by the simulation results fromEM-
spice.Design 1.dis a power grid with 6 mortal wires and its predicted
lifetime is 7 years. AtTtarget , there are 13 IR drop violations and
the minimum voltage is 0.9435V. In the �rst iteration, 2 branches
are widened according to Eq.(5). Afterwards, the minimum voltage
is increased to 0.9442V and the number of violations is reduced to
8. Then the second iteration is performed, after which only 3 viola-
tions left. Finally the third iteration leads to a minimum voltage of
0.9452V. During the iterations, 5 branches are widened in total.

Table 4: Results of sensitivity-based localized �xing

circuit
# mortal # violations

# iter
# modi�ed area total

wires atTtarget branches increase time

Design 1.c 3 2 1 3 0.446% 1.62s
Design 1.d 6 13 3 5 0.765% 3.91s
Design 2.c 4 3 1 2 0.151% 1.07s
Design 2.d 7 9 2 6 0.352% 1.86s

According to the results in Table 4, the sensitivity-based local-
ized �xing method is very e�cient in �xing the IR drop violations
in localized style. Since this method enables localized branch �xing
rather than whole interconnect modi�cation, it keeps most branches
unchanged, thus is more suitable to perform in the IR and EM sig-
no� stages of physical design �ow. Compared with Table 3, we can
see that sensitivity based method leads to less area overhead com-
pared to the �rst IR drop �xing method as we can select most prof-
itable segments to size.

On the other hand, due to the maximum allowable power routing
space and other design rule constraints, IR drop reduction can be
achieved by modifying only the branches with void nucleations or
the branches close to the wires with void nucleations. As a result,
more expensive global wire �xing or optimization method may still
be needed.

7 CONCLUSION
In this paper, we have proposedGridNet, a fast data-driven EM-
induced IR drop analysis framework for power grid networks based
on the CGAN model. It is able to speed up the incremental full-chip
EM-induced IR drop analysis in sensitivity-based optimization and
IR drop violation �xing during the power grid design and optimiza-
tion. We demonstrated that theGridNetcan be adopted to learn
temporal dynamics in the aging process of power grid networks
by using the continuous time as one of the conditions. Numerical
results on a number of synthesized power grid networks validated
that the new method can lead to �ve orders of magnitudes speedup
over recently proposed full-chip coupled EM and IR drop analysis
tool. More importantly, by leveraging the di�erentiable feature of
theGridNetmodel, we can easily obtain the sensitivity information
of node voltage with respect to the wire resistance (or width). We
then demonstrated two e�cient localized strategies to �x IR drop vi-
olations for late stage power grid designs. Numerical results showed
that the localized IR drop violation �xing is remarkably fast by uti-
lizing the sensitivity information fromGridNet.


